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Cortical network functioning critically depends on finely tuned
interactions to afford neuronal activity propagation over long
distances while avoiding runaway excitation. This importance
is highlighted by the pathological consequences and impaired
performance resulting from aberrant network excitability in psy-
chiatric and neurological diseases, such as epilepsy. Theory and
experiment suggest that the control of activity propagation by
network interactions can be adequately described by a branching
process. This hypothesis is partially supported by strong evidence
for balanced spatiotemporal dynamics observed in the cerebral
cortex; however, evidence of a causal relationship between net-
work interactions and cortex activity, as predicted by a branching
process, is missing in humans. Here this cause–effect relation-
ship is tested by monitoring cortex activity under systematic
pharmacological reduction of cortical network interactions with
antiepileptic drugs. This study reports that cortical activity cas-
cades, presented by the propagating patterns of epileptic spikes,
as well as temporal correlations decline precisely as predicted for
a branching process. The results provide a missing link to the
branching process theory of cortical network function with impli-
cations for understanding the foundations of cortical excitability
and its monitoring in conditions like epilepsy.
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Understanding the organization of complex structural brain
networks and how these structures shape dynamics is widely

considered an essential step to grasp cortical network function
(1–3). Cortical network functioning critically depends on a finely
tuned level of excitability, the transient or steady-state response
in which the brain reacts to a stimulus. Whereas small, local
responses indicate a comparably small excitability, large and
global responses suggest excitability in brain tissue to be high.
In cortical networks, excitability must be small enough to pre-
vent explosive growth of neuronal activity cascades on one hand.
On the other hand, it must be large enough to allow for activity
propagation over long distances to afford neuronal communica-
tion across sites far apart. The importance of finely tuned cortical
excitability levels is highlighted by the pathological consequences
and impairments resulting from aberrant network excitability in
neurological (4) and psychiatric diseases (5). In epilepsy, changes
in cortical network excitability are believed to be an important
cause underlying the initiation and spread of seizures, i.e., the
large nonphysiological neuronal activity cascades across time
and space (6–8). Pharmacological reduction of excitability con-
sequently constitutes the main treatment approach to control
seizures (9).

In the brain, excitability is a product of excitatory and
inhibitory network interactions. To avoid regimes where
excitability is too high or too low, these interactions must be
finely tuned. A growing amount of evidence indicates that this
control of activity propagation by network interactions can be
adequately described by a branching process (10–17). In a
branching process, activity will remain small and local when
interactions are too weak. When interactions are too strong,

dynamics overactivates the whole network. At the critical tran-
sition between these two states, activity propagates in balanced
cascades, or avalanches, avoiding premature die-out and run-
away excitation. These balanced propagation patterns closely
match empirical observations in animal and human studies where
spontaneous activity was found to propagate from one active
group of neurons to another in cascades over long distances
without runaway excitation (12, 18–20). Further evidence comes
from observations of long-range temporal correlations in corti-
cal activity (16, 18, 21), another hallmark of a critical branching
process (16, 17, 22). When network interactions in a branch-
ing process are reduced, cascade sizes and temporal correlations
decline (10–12, 16, 17, 23). In vitro studies using cortex prepa-
rations, where network interactions can be pharmacologically
reduced, show that activity changes closely match the predictions
of a branching process (12). Pharmacological manipulation of
network interactions was also shown to impact initiation, prop-
agation, and termination of epileptiform activity in cortical slices
from rodents (24).

Empirical evidence, however, that alterations in cortical net-
work interactions predict dynamics changes according to a
branching process in humans is missing. The lack of this cause–
effect demonstration constitutes a missing link to the branching
process theory with implications for understanding the founda-
tions of cortical excitability and its management in conditions like
epilepsy.

Here the hypothesis that cortical network interactions con-
trol dynamics according to a branching process in humans is
directly tested. The study makes use of the notion that antiepilep-
tic drugs (AEDs) are specifically targeted at reducing net-
work interactions either by reduction of a neuron’s individual
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excitability, reduction of excitatory synaptic transmission, or
increase in inhibitory synaptic transmission (9). By systematic
investigation of the effects of AEDs on cortex dynamics along-
side a companion neural network model, the study shows that
changes in network interactions predict spatiotemporal cortex
dynamics precisely as expected for a branching process.

Results
A parsimonious neuron network model based on a branch-
ing process was first analyzed to review how collective cortical
dynamics is shaped by network interactions and AED action.
Similar models have been used widely to successfully predict the
dynamics of tissue from the cortex in humans, monkeys, rats, and
turtles (12, 13, 15, 16, 25–29). The model is simple enough to pro-
vide insight into the mechanisms governing collective network
dynamics yet entails sufficient detail to model relevant aspects of
AED action on network interactions. The network consisted of
probabilistic binary neurons with all-to-all connectivity, a subset
of neurons (20%) being inhibitory (Fig. 1B). This study’s model
differed from previous models in that it contains means to mimic
AED action to reduce excitability (9) (Fig. 1A): 1) a variable
pne to probabilistically reduce neuron excitability, 2) a scaling
parameter pexc by which excitatory synaptic strengths could be
downscaled, and 3) a scaling parameter pinh by which inhibitory
synaptic strengths could be upscaled. How the model dynamics
in terms of cascading activity and temporal correlations change
as a result of decreasing excitability by means of AED action
was studied.

In the absence of AED action (i.e., pne , pexc, and pinh all set
to 1), collective dynamics exhibited the well-known phase tran-
sition from low (albeit not completely ceasing; ref. 15) activity
to a high-activity phase when connection strength was increased
(Fig. 1C, black line). Activity propagated in the form of cascades
or avalanches (12, 25, 27). Cascade sizes, quantified by the large
cascade fraction (LCF), became larger as interaction strength
was increased, whereas temporal correlations, quantified by the
autocorrelation half-width (ACW), peaked at criticality (16, 17,
21) (Fig. 1C, gray dashed and solid lines, respectively). Next, the
effect of AED action on network state in general and on these
dynamical signatures in particular was studied. The dynamics of
excitable networks, such as the network model studied here, are
generally characterized by the largest eigenvalue λ of the net-
work adjacency matrix, with criticality occurring at λ= 1 (15,
27, 30, 31). AED action effectively reduced the average connec-
tivity of the network and thus the largest eigenvalue λ of the
network’s adjacency matrix (Fig. S3B). If networks were instan-
tiated at criticality (λ= 1) or in a slightly subcritical regime,
AED action thus drove the system further into the subcriti-
cal regime (λ< 1; Fig. S3C). By consequence, LCF and ACW
decreased with each AED mechanism of action modeled when
dynamics was placed at criticality or in the subcritical regime
(Fig. 1 D and E). Collectively, these model results illustrate
that AED action controls network dynamics by acting on the
system’s control parameter, i.e., network interactions. By chang-
ing network interactions in experiment, AEDs may therefore
allow to directly test if network interactions control spatiotem-
poral cortex dynamics as predicted by a branching process
in humans.

To study cascading network events in human cortex, this study
took advantage of the fact that interictal epileptic spikes super-
impose in the extracellular field as a consequence of synchronous
activity of spatially neighbored groups of neurons (Fig. 2A).
Epileptic spikes consist of elevated population activity known
to propagate across cortex (32). Interspike intervals exhibited a
bimodal density distribution (Fig. 2B) indicative of short inter-
vals arising from spikes in the same cascade and long intervals
separating different cascades. Spatiotemporal spike cascades
were consequently identified if spikes occurred within the same

or consecutive time bins of width ∆T (Fig. 2C), where ∆T
was chosen to be greater than the short timescale of interspike
intervals within a cascade but less than the longer timescale of
intercascade quiescent periods (33). Spikes were observed to
organize in cascades of continuous events in time and space
indicative of the presence of significant correlations in neuronal
activity among cortical sites which, accordingly, were destroyed
when the times of spikes were shuffled randomly (Fig. 2D). Cas-
cade sizes exhibited a high degree of variability with larger sizes
occurring systematically less often, as predicted by a branching
process in the vicinity of criticality or in a slightly subcritical
state (10–12, 14, 17). In further agreement with a branching pro-
cess, cascade size distributions and the respective scaling regimes
were bounded by the system size (34), which in this case corre-
sponded to the number of electrocorticogram (ECoG) channels
in each patient. Cascade size distributions sometimes exhibited
the impression of a slight bump or kink in its tail but in the major-
ity of patients did not show a pronounced or coherent indication
of more than one slope (Fig. 2D, red), in line with modeling
results. Across patients, higher AED loads were generally asso-
ciated with a marked reduction in large cascade sizes (Fig. 2D,
blue). As a quantification, the LCF was significantly lower in
days with high compared to low AED load (Fig. 2E; P = 0.006,
two-sided paired t test). This effect could not be explained by
spike rate changes, which exhibited no difference (P = 0.577,
two-sided paired t test; Fig. S2A). Note that AED intake was
not always completely ceased in patients, which is why cascade
size distributions were compared relative to high vs. low AED
medication regimes and which may be one explanation why not
all patients exhibited a perfect power-law scaling of cascade size
distributions even during low AED medication days.

While the decline in large cascades under AED action visu-
ally matched the observations in the neuron network model
closely (Fig. 1D), a more quantitative comparison between model
and experiment can be challenging (35), in particular since
it requires a more precise, quantitative knowledge of AED
action in real-life conditions. The knowledge of how, quan-
titatively, an AED exerts its actions in real-life conditions is
limited by the fact that the action of AEDs at the molecular
level is not fully understood; the fact that most AEDs have
more than one mechanism of action; the fact that concentra-
tion of a drug in the brain is not precisely known; and the fact
that action depends further on metabolization rates, drug inter-
action, and more (9, 36, 37). Experiments using cell cultures
may, however, provide some approximate estimates. Diazepam,
a common AED acting on the GABA-ergic pathway, for exam-
ple, has been observed to augment conductance levels in a
concentration-dependent way, from approximately 50 pS at base-
line to a maximum conductance of 70 to 80 pS (38). Thus, while
many additional factors are clearly at play in real-life condi-
tions, if one considered a 50% increase in inhibitory efficacy in
the study’s model as a biology-inspired approximate estimate,
then the relative changes observed in the model were of similar
order of magnitude in comparison to experimental observations
(Fig. S1 B, Top).

Next, it was tested whether temporal correlations were con-
trolled by AEDs as predicted by a branching process. Modu-
lations in signal power are a generally useful currency in char-
acterizing neural dynamics (39). The study analyzed broadband
high-frequency power modulations which provide a local esti-
mate of population spike rate variations near an electrocortico-
graphic electrode (40–44). Autocorrelation functions obtained
from these high-frequency power modulation have been shown
to accurately capture temporal integration properties (45). Auto-
correlation functions exhibited a faster decay in high AED
medication days compared to low medication days (Fig. 3A).
As a quantification of this decay, the ACW was significantly
lower in days with high compared to low AED load (Fig. 3B;
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Fig. 1. AED action induces subcritical dynamics in a neural network model. (A) Illustration of the main mechanisms of AED action. Collectively, AEDs are
designed to reduce seizure risk by decreasing cortical network excitability. (B) Conceptual cartoon illustrating neural network model features, including
excitatory (black) and inhibitory (green) recurrent synapses. The strengths of inhibitory and excitatory synaptic transmission along with individual neuron
excitability can be selectively changed to mimic AED action. (C) Network dynamics exhibits a phase transition between an inactive phase, where cascades
remain small and local, and an active phase, where activity is dominated by large cascades spanning the whole network upon increasing connection
strengths (solid black line). Gray dashed line indicates the LCF. Gray solid line indicates ACW, which peaks at criticality (λ= 1). Red box shows cascade
size distribution and autocorrelation functions when dynamics is poised in a slightly subcritical regime, mimicking experimental observations under low
AED load. (D and E) AED action incurs decline of large cascade sizes and faster autocorrelation function decay. Large plots show exemplary cascade size
distribution and autocorrelation function (25% decrease in neuron excitability, 25% decrease in excitatory synaptic strength, and 50% increase in inhibitory
synaptic strength). (Insets) LCF and ACW for a range of network excitability reducing parameter values.
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Fig. 2. Epileptic spikes organize as activity cascades reduced in size by AED action. (A) Identification of spikes in electrocorticogram. (B and C) Bimodality
of interspike interval distribution identifies spike cascades and their timescale. (D) Spike cascade size distribution from four patients during high (blue) and
low (red) AED load days. High AED load reduces the number of large cascades (shaded gray area). Broken lines indicate size distributions from randomly
shuffled spike times. (E) AEDs significantly reduce the number of large cascades (gray lines indicate individual patients; black line indicates mean with
whiskers denoting SD).

P = 0.007, two-sided paired t test). This effect could not be
explained by changes in high-frequency power, which exhibited
no difference (P = 0.988, two-sided paired t test). The relative
changes observed in the model were again qualitatively compa-
rable to the experimental data when biology-inspired estimates
of AED action (38) were incorporated in the model (Fig. S1
B, Bottom). Again, an exact quantitative comparison between
model and experiment is limited by the facts that the action
of AEDs at the molecular level is not fully understood; that
most AEDs have more than one mechanism of action; that
drug concentrations in the brain are not precisely known; and
that action depends further on metabolization rates, drug inter-
action, and more (9, 36, 37). Thus, the larger autocorrelation
change observed in the model in comparison to data (Fig. S1
B, Bottom) may relate to the fact that the changes in cas-
cade size are also more limited in the data than in the model
(Fig. S1 B, Top) and, collectively, may suggest that diazepam,
under in vivo conditions, potentially leads to a smaller increase
in inhibitory efficacy than what is observed under in vitro
conditions (38).

The changes in cascade sizes and temporal correlations
occurred despite no relevant change in spike rate or signal
power in the ECoG data. It is important to consider that rate

changes can, in principle, give the impression of altered cas-
cade size distributions (46) or, under high levels of external
forcing or spontaneous network activity, can lead to a lack of
critical dynamics altogether (47). To further explore cascade
sizes and temporal correlations under rate-matched conditions,
the study revisited the model and matched the model’s spike
(or event) rate to the one observed experimentally (Fig. S2A).
Under these rate-matched conditions, model cascade sizes and
temporal correlations similarly declined under AED action
and closely mimicked experimental observations (Fig. S2B).
Collectively, the close match between model and experiments
thus provides strong indication that the observed changes are
not simply an effect of event rate (46, 47) but due to an
underlying network state change with a shift toward subcritical
dynamics.

Discussion
The results demonstrate that human cortical dynamics under
manipulation of network interactions by AEDs is predicted by
a branching process. Albeit backed by a large number of com-
putational studies (16, 23, 25–29, 48, 49), empirical evidence
demonstrating interaction strength as a control parameter in
this phase space had previously been limited to reduced in vitro
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Fig. 3. AED action reduces temporal correlations in cortex. (A) Autocorrelation functions from four patients during high (blue) and low (red) AED load
days. (B) AEDs significantly reduce temporal correlations measured by the autocorrelation function half-width (ACW; gray lines indicate individual patients;
black line indicates mean with whiskers denoting SD).

preparations (12). A growing number of empirical and theo-
retical studies suggest that human cortical network dynamics is
normally poised at criticality or in a slightly subcritical regime
(18, 21, 47, 49–54). By using AEDs as means to pharmaco-
logically manipulate and reduce cortical network interactions
in epilepsy patients, the study reports that dynamics becomes
more short ranged in terms of spatiotemporal activity cascades
and temporal correlations. These findings closely match pre-
dictions for dynamical shifts toward the subcritical state, as
demonstrated in a companion model. By directly controlling
network interaction in patients, this work overcomes previous
limitations inherent to passive monitoring of network dynam-
ics. Note that AED intake was not always completely ceased
in patients, which may be one explanation why not all patients
exhibited a perfect power-law scaling of cascade size distribu-
tions even during low AED medication days. Another potential
explanation for why not all patients exhibited a perfect power-law
scaling even during low AED medication days may be related to
some research suggesting that realistic neural networks always
show some slightly subcritical behavior due to the level of spon-
taneous activity occurring in those networks (47). However,
regardless of whether dynamics is normally critical or slightly
subcritical, the results indicate that AEDs drive cortical network
dynamics further into a subcritical regime by acting on the con-
trol parameter, which may serve to avoid the risk of runaway
excitation (Fig. 4).

This work adds to a rapidly growing amount of research on
the relevance of phase transitions and bifurcations in normal,
healthy cortex dynamics and in diseases like epilepsy. The con-
cept of phase transitions stems traditionally from physics, and
bifurcations constitute their mathematical analogs. Bifurcations
have been shown to underlie the offset of epileptic seizures (55);
the role of bifurcations at seizure onset is currently the topic of
ongoing discussions (56–58). The idea that a bifurcation or phase
transition point is crossed at seizure onset may be supported by
observations of a breakdown of the scale-free dynamics charac-
terizing normal cortex dynamics during epileptic seizures (51).
However, whether this transition point corresponds to a critical

transition associated with a branching process or to some other
bifurcation demands further research. Overall, the hope is that
by advancing insights into the underlying mechanisms of seizure
onset and offset as well as insights into the determinants of nor-
mal cortical functioning, bifurcation or phase transition theory
may lead to a better understanding of normal cortex dynam-
ics and ictogenesis and better translation into methods for the

Effective Interaction Strength

A
ct

iv
ity

AED

subcritical supercritical

Fig. 4. Growing evidence suggests that activity propagation in cortical net-
works can be described by a branching process near the transition between
an inactive (subcritical) and an active (supercritical) phase (red). AEDs shift
network dynamics farther into the subcritical phase (blue), thereby estab-
lishing a safety margin to avoid runaway activity associated with the
supercritical phase.
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detection, prediction, and control of seizures and will eventually,
based on better diagnostics, afford improved treatments (59).

In order to understand brain function, understanding the
organization of complex structural brain networks and how struc-
ture shapes dynamics on these networks is an essential step
(1–3). One of the central concepts of brain network science
is effective connectivity, which attempts to capture a network
of directed causal effects between neural elements (60, 61).
While concepts like effective connectivity are widely used, they
are best tested by direct perturbation, and in humans, phar-
macological manipulation might be one of few feasible ways
to do this. The decrease in activity spread across cortical net-
works observed in this study’s data under systematic reduction
of network interactions is well aligned with expectations for
reduced effective connectivity (60, 61). A branching process can
be considered a more specific extension of the effective con-
nectivity framework by adding a precise quantitative component
that dictates how specifically, i.e., quantitatively, spatiotempo-
ral dynamics changes as a function of network interactions. The
confirmation of quantitative predictions from a branching pro-
cess in cortex (16, 23, 25–29, 48, 49) in this work can thus
also be considered a validation of the more qualitative effective
connectivity concept.

Beyond providing a missing link to the branching process the-
ory of cortical network function, the current findings have impli-
cations for understanding the foundations of cortical excitability
and information processing in cortex. Aberrant excitability lev-
els are an important cause underlying the initiation and spread
of seizures (6–8). Accordingly, the ability to monitor excitabil-
ity and control its degree is of prime importance for adequate
clinical care and treatment. As a unifying framework linking
interictal spike cascades, temporal correlations, and cortical net-
work excitability, a branching process provides precise markers
informed by theory on how to monitor excitability levels from
EEG (62). For example, while previous work has shown that
interictal spike count itself does not reflect excitability (63),
a branching process, backed by this study’s empirical findings,
suggests that cascade sizes of interictal spikes are more informa-
tive about network excitability. The diminished spread of neural
activity to other cortical sites indicated by the smaller cascades
under high AED load is in line with observations of lower syn-
chrony under AEDs (62) indicative of decreased cortical inter-
actions. Collectively, a fundamental dynamical understanding of
how excitability and its control represents in cortical activity may
help to screen and evaluate treatments targeted at excitability in
epilepsy and beyond.

The study here monitored activity spread across cortex using
epileptic spikes. Motivated by predictions from a branching pro-
cess, it was observed that the size distribution of epileptic spike
cascades was informative about AED action, whereas simple
spike rate was not. These observations may help to resolve
some at times controversial findings with regard to the mean-
ing of epileptic spikes as a marker of cortical excitability, seizure
propensity, and how spikes are impacted by AEDs (64). While
several studies have suggested that spike rate, and, more gen-
erally, interictal epileptiform discharges, are reduced by AEDs
(65), other studies have questioned their relationship to seizure
likelihood and excitability by reporting no (66) or even pos-
itive relationships between spike rate and AED load (67). A
recent study using long-term intracranial data concluded that
the relationship between epileptic spike rates and seizures was
subject-specific (68), which adds further to the notion that spike
rate may not be a robust marker of AED action and cortical
excitability levels. The branching process framework may help
to reconcile these findings by suggesting that the spike cascade
size distribution, not spike rate, is a more appropriate metric
capturing AED action and its effect on cortical excitability lev-
els in a predictable way. While spike rates may change without

an underlying change in network excitability, for example, due
to varying levels of external drive, the cascade size distribution
remains a marker of the underlying dynamical state, if these
rate changes are accounted for in the analysis (46). Monitor-
ing of spike cascades instead of spike rates may thus help to
resolve some of these long-standing controversies on spikes and
their relationship to AED action, cortical excitability, and seizure
propensity (64).

The maintenance and integration of information over
extended periods of time is considered to be important for infor-
mation processing at the neural network level (69, 70) for which
long-range temporal correlations are thought to provide the neu-
ral basis (16, 45, 71, 72). Consequently, theory and experiment
show that a balanced state, where long-range temporal correla-
tion peak, gives rise to optimal information processing (13, 18,
25, 33). This study’s results demonstrate a systematic decrease
in temporal correlations with AED load, some of which are
known to have detrimental effects on cognition. The insights
gained into the decline of spatiotemporal correlation as a func-
tion of decreased cortical excitability may thus help to uncover
the underlying neuronal correlates linked to these cognitive
impairments.

Materials and Methods
Preprocessing of Electrocorticogram Data. Multiday electrocorticogram
recordings from 17 patients undergoing presurgical monitoring at the
Epilepsy Center of the University Hospital of Freiburg, Germany, were ana-
lyzed. The study was approved by the ethics committee of the University
of Freiburg, and all subjects had signed informed consent that their clinical
data might be used and published for research purposes. The number and
dosing level of AEDs varied over the course of the recording period. The
number of electrodes varied between patients and included both surface
and depth electrodes (mean number of electrodes n = 78± 24, 30 to 121).
Electrode placement was solely determined by clinical considerations. Elec-
trocorticogram data were sampled at either 256, 512, or 1,024 Hz. If sampled
at higher rate, data were first downsampled to 256 Hz. A notch filter was
then applied to remove potential contamination with 50 Hz line noise. Data
were preprocessed in segments of 1 h duration. To compare high and low
AED medication regimes, the day with the highest cumulative AED load and
the day with the lowest AED load in each patient were picked and all hours
from midnight to midnight within this day were analyzed. If there was more
than 1 d with highest and/or lowest medications, the study picked the 2 d
farthest apart from each other.

Detection of Epileptic Spikes. Spikes are large, abnormal discharges that
occur between seizures in patients with epilepsy. Sharply contoured wave-
forms as spikes via a previously validated method (Fig. 2A and ref. 73) were
detected here. In brief, for each 1-min-long data block, potential spikes
were detected, if they crossed a threshold defined by standard deviations
(SD coefficient = 4) of the absolute amplitude of high bandpass filtered
signal (20 to 50 Hz, second-order digital Butterworth filter) for the chan-
nel. Next, the raw ECoG data were bandpass filtered between 1 and 35 Hz
(second-order digital Butterworth filter), and all channels in the 1-min block
were scaled by a scaling factor which is the median value of the average
absolute amplitudes across all channels in the patient. Once data had been
scaled, shape criteria of amplitude, duration, and slope were applied to the
scaled, lower bandpass filtered EEG signal (1 to 35 Hz) at the previously
identified potential spikes. Spike duration was determined by searching 10
sampling steps (at 256 Hz) on either side of the detected peak to find the
minima on each side. Standard parameters described previously were used
to identify spikes (73): total amplitude of both half-waves > 600 µV, slope
of each half-wave > 7 µV/ms, and duration of each half-wave > 10 ms.
Timestamps of spike maxima were saved for further analysis.

Detection of Spike Cascades. Fig. 2B shows the distribution of interspike
intervals from one patient. The bimodality indicates a short timescale
belonging to the interspike intervals within a cascade (left peak), and a
much longer timescale indicative of the intervals between cascades (right
peak). A cascade was defined as a spatiotemporal cluster of consecutive
spikes with interspike intervals not exceeding a temporal threshold ∆T . ∆T
was chosen to be in the trough between the two peaks (∆T = 20 sampling
steps at 256 Hz sampling; gray vertical line in Fig. 2B) in order to identify
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spikes belonging to one cascade and to prevent concatenation of separate
cascades.

At criticality, cascade size distributions follow a power-law distribution
bounded by the system size (34), whereas subcritical/supercritical dynamics
are characterized by a decreased/increased incidence of larger cascades (12).
Here, cascades were defined as large, if their size was greater than half
the system size, i.e., half the number of channels. To quantify the relative
incidence of large cascades, the large cascade fraction, LCF, was defined as
the ratio between the sum of all large cascades sizes (i.e., cascades with size
greater than half the system size) and the sum of all cascades sizes.

Signal Autocorrelation. Modulations in signal power are generally useful to
characterize neural dynamics (39). In particular, fluctuations in the broad-
band high-frequency 50 to 200 Hz range have been shown to provide a
local, spatiotemporal estimate of population spike rate variations near an
electrode (40–44).

For each ECoG channel, time courses of broadband high-frequency power
fluctuations were obtained by computing the mean 50 to 100 Hz signal
power every 125 ms (fast Fourier transform [FFT] routine, Hanning window)
for each hour during either a high or low AED medication day. Signal power
estimates are not normally distributed across time samples; the logarithm
of power estimates was thus first taken to normalize these time series data
(45, 74). Next, an autocorrelation function of these normalized power time
series was obtained for each electrode and hour in recording. Analyses in
the main part of the manuscript are based on average autocorrelation func-
tions across all electrodes and across all hours in either high or low AED
medication day for each patient.

ACW was defined as the full width at half maximum of the autocorrela-
tion function of the power time course. ACW was determined as twice the
time lag at which the ACF became smaller than half its value between max-
imum to minimum. Since time lags are in 125-ms increments, the minimal
value of ACW is 0.25 s.

Computational Neuron Network Model. The neuron network model consists
of N = 200 binary-state neurons connected by all-to-all, asymmetric synaptic
coupling strengths wij . Each neuron j is either excitatory or inhibitory, corre-
sponding to wij ≥ 0 or wij ≤ 0, respectively, for all i. The binary state si(t + 1)
of neuron i (s = 0 inactive, s = 1 spiking) is determined based on the sum
p(t + 1) of its inputs p(t + 1) =

∑N
j=1 wij(t)sj(t) and the parameter control-

ling neuronal excitability, pne, according to the following dynamical rules: if
0< p< 1, then the neuron fires with probability p ∗ pne; if p≥ 1, then the
neuron fires with probability pne; and if p≤ 0, then the neuron does not
fire. Note that pne applies to both inhibitory and excitatory neurons.

The dynamics of excitable networks are generally characterized by the
largest eigenvalue λ of the network adjacency matrix wij , with critical-
ity occurring at λ= 1 (15, 27, 30, 31). At λ< 1, activity is low (albeit may
not cease completely; ref. 15) and does not excite the whole network, and
the system is subcritical. At λ> 1, each neuron excites, on average, more
than one postsynaptic neuron, and the system is supercritical. An appro-

priate order parameter is the aggregate activity of the network, defined
as S(t) = N−1 ∑

i si(t), the fraction of nodes that are excited at time t (15).
Fig. 1C, black line, shows the normalized mean activity S, i.e., S(t) aver-
aged over time. In order to construct networks with a particular λ, wij

values are first drawn from a uniform distribution [0,1]. Then, 20% of neu-
rons are set to being inhibitory (by multiplication of the corresponding
coupling strengths with –1) and the remaining 80% of neurons to being
excitatory. wij are then multiplied by N ·K/

∑
wij (27, 29), where K, a mea-

sure of the average connection strength, is closely related to the desired
λ (Fig. S3A).

The model affords implementation of different AED mechanisms known
to reduce cortical network excitability: reduction of individual neuronal
excitability, reduction of excitatory synaptic transmission, and increase of
inhibitory synaptic transmission (Fig. 1A and ref. 9). Reduction of individ-
ual neuronal excitability is controlled by parameter pne, where pne≤ 1.
Decreased excitatory synaptic transmission is modeled by multiplication of
all positive wij with factor pexc, where pexc ≤ 1. Increased inhibitory synaptic
transmission is modeled by multiplication of all negative wij with factor pinh,
where pinh≥ 1.

The onset of stimulation is instantiated by setting a random neuron to
active. Activity is monitored until 500 time steps have passed or until activity
has died out, at which point a new cascade is started by setting a random
neuron to active. A total of 100,000 such cascades at each λ and for each
AED mechanism were modeled. The temporal autocorrelation was studied
using the time course of overall network activity, i.e., the sum of active
neurons at each time step.

The study also evaluated cascade size distribution and temporal correla-
tions in the model under conditions where the spike (or event) rate in the
model was matched to the experimentally observed spike rates. Experimen-
tally, a constant spike rate of approximately two spikes per minute and ECoG
channel under high and low AED load was observed (Fig. S2A). Experimental
interspike intervals exhibited a bimodal density distribution (Fig. 2B) indica-
tive of an effective timescale separation analogous to this study’s model:
a short timescale corresponding to the intervals arising from spikes in the
same cascade and a long timescale corresponding to the intervals separat-
ing different cascades. Consequently, an experimentally observed spike rate
of two spikes per minute (Fig. S2A) monitored over 24 h corresponded to
576,000 spikes (or events) in this study’s model with 200 channels (2 spikes
per min per channel × 200 channels × 1,440 min). The study therefore
analyzed cascade size distributions and temporal correlations for exactly
576,000 spikes in each condition in the study’s model to match the experi-
mental event rate and data over 24 h. Under these rate-matched conditions
to experiment, model cascade sizes and temporal correlations continued to
decline under AED action and closely mimicked experimental observations
(Fig. S2B).

Data Availability Statement. All patient data are available from a data
repository (75), and custom code used for analysis is available from the
author upon reasonable request.
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